Scroll Top

๐—ฆ๐—ถ๐—บ๐—ฝ๐—น๐—ถ๐—ณ๐˜† ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—”๐—œ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ ๐˜„๐—ถ๐˜๐—ต ๐—ฎ ๐—ฆ๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐—ฑ ๐—ง๐—ฒ๐—บ๐—ฝ๐—น๐—ฎ๐˜๐—ฒ!

IMG_6770

๐—ฆ๐—ถ๐—บ๐—ฝ๐—น๐—ถ๐—ณ๐˜† ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—”๐—œ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ ๐˜„๐—ถ๐˜๐—ต ๐—ฎ ๐—ฆ๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ๐—ฑ ๐—ง๐—ฒ๐—บ๐—ฝ๐—น๐—ฎ๐˜๐—ฒ!

Building a robust Generative AI application requires careful planning, organization, and scalability. Overwhelmed by where to start?

I’ve created a ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—”๐—œ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐—ฆ๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ to help streamline your workflow!

๐—ž๐—ฒ๐˜† ๐—™๐—ฒ๐—ฎ๐˜๐˜‚๐—ฟ๐—ฒ๐˜€ ๐—ผ๐—ณ ๐˜๐—ต๐—ฒ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜ ๐—ฆ๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ
โœ… ๐—–๐—ผ๐—ป๐—ณ๐—ถ๐—ด ๐—™๐—ผ๐—น๐—ฑ๐—ฒ๐—ฟ: YAML files for all configurations, keeping your settings separate from the code.
โœ… ๐˜€๐—ฟ๐—ฐ/: Modularized core source code with logical components like ๐š•๐š•๐š–/ and ๐š™๐š›๐š˜๐š–๐š™๐š_๐šŽ๐š—๐š๐š’๐š—๐šŽ๐šŽ๐š›๐š’๐š—๐š/.
โœ… ๐—ฑ๐—ฎ๐˜๐—ฎ/: A well-organized storage solution for data types such as embeddings and prompts.
โœ… ๐—ฒ๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ๐˜€/: Sample scripts for implementation guidance, such as chat sessions or prompt chaining.
โœ… ๐—ป๐—ผ๐˜๐—ฒ๐—ฏ๐—ผ๐—ผ๐—ธ๐˜€/: Jupyter notebooks for experimentation and analysis.

๐—•๐—ฒ๐˜€๐˜ ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—”๐—œ ๐——๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜
1๏ธโƒฃ Keep configurations readable in YAML format.
2๏ธโƒฃ Implement proper error handling and logging.
3๏ธโƒฃ Use rate-limiting to manage API usage effectively.
4๏ธโƒฃ Maintain clear separation between model clients.
5๏ธโƒฃ Cache results intelligently to save costs and time.
6๏ธโƒฃ Document every step for better collaboration and maintainability.
7๏ธโƒฃ Leverage Jupyter notebooks for testing ideas quickly.

๐—š๐—ฒ๐˜๐˜๐—ถ๐—ป๐—ด ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜๐—ฒ๐—ฑ
1. Clone the repository and install dependencies.
2. Configure your model using the provided YAML files in the ๐šŒ๐š˜๐š—๐š๐š’๐š/ folder.
3. Explore the ๐šŽ๐šก๐šŠ๐š–๐š™๐š•๐šŽ๐šœ/ folder for ready-to-use implementations.
4. Use Jupyter notebooks in the ๐š—๐š˜๐š๐šŽ๐š‹๐š˜๐š˜๐š”๐šœ/ folder for experimentation.

๐—ฃ๐—ฟ๐—ผ ๐——๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜ ๐—ง๐—ถ๐—ฝ๐˜€
– Stick to modular design principles.
– Write unit tests for new components.
– Track token usage and API limits carefully.
– Keep documentation up-to-date for seamless scaling.

With this structure, you can manage your Generative AI projects more effectively while focusing on innovation rather than struggling with organization.

๐—ช๐—ฎ๐—ป๐˜ ๐˜๐—ผ ๐—ฐ๐—ผ๐—น๐—น๐—ฎ๐—ฏ๐—ผ๐—ฟ๐—ฎ๐˜๐—ฒ ๐—ผ๐—ฟ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—บ๐—ผ๐—ฟ๐—ฒ? ๐—Ÿ๐—ฒ๐˜โ€™๐˜€ ๐—ฐ๐—ผ๐—ป๐—ป๐—ฒ๐—ฐ๐˜!
Feel free to share your feedback, and let me know how this structure works for your projects.

 

Leave a comment